Lawrence Shore
Engelhard Corporation
May 25, 2004

Platinum Group Metal Technology Development DE-FC36-03GO13104

This presentation does not contain any proprietary or confidential information

Pt Recycling is Crucial to Successful Implementation of Fuel Cells

Recycling will supply the bulk of Pt required in 2050

Refiners, like Engelhard, become 'miners'

Schematic of a Fuel Cell System With Reformer

1 Sulfur Removal

- **Water Gas Shift**
- 2 Catalytic Partial Oxidatio 5 PROX
- **Steam Reforming**
- 6 Anode

- Cathode
- **8** Emission Control

Objectives of DOE Pt Recycling Project (Started 11/2003)

Recycle all PM-containing catalysts in a fuel cell 'system'

- Develop a commercially-acceptable, environmentally-friendly process for recovering and recycling Pt and Ru from membrane electrode assemblies (MEAs)
 - Develop a process that does not emit pollutants, especially HF
 - Evaluate Ru recovery from MEA's
- Develop a process for PM recovery from metal monoliths
- Maximize precious metal (PM) yield from ceramic catalysts

Principal objectives in **bold**.

What Makes a Refining Process Commercially Acceptable?

- Process must permit quantification of the precious metal content of lot (weigh, sample, analyze)
- Precious Metal Recovery Meets or Exceeds Industry Standard
- Processing Cost is comparable to reference method
- Safety Concerns are Minimal

Organization Chart for Precious Metal Recovery/Recycling Project

Examples of Fuel Cell Catalysts

Membrane electrode assembly (MEA) (Adapted from W.L. Gore website)

Gasket
Gas diffusion layer
Cathode catalyst
Nafion membrane
Anode catalyst

Honeycomb monoliths (ceramic) - Used in a fuel cell reformer

Budget for DOE Project No. DE-FC36-03GO13104

FY2003	\$375,000	\$300,000	\$75,000.00
FY2004	\$681,250	\$545,000	\$136,250
FY2005	\$875,000	\$700,000	\$175,000
FY2006	\$1,625,000	\$1,300,000	\$325,000
FY2007	\$1,513,995	\$1,211,700	\$302,295
FY2008	\$900,000	\$720,000	\$180,000

Engelhard has a 20% cost share obligation

Technical Barriers and Targets

- Address barriers N (Cost) and O (Stack Material and Manufacturing Cost) of the HFCIT Program Multi-Year R&D Plan.
- Meet DOE technical targets for 2010 for fuel cell power systems
 - > \$45/kW cost target for Transportation
 - Direct hydrogen
 - Reformer-based operating on low-sulfur gasoline
 - ▶ \$400 700/kw for Stationary
 - PEM fuel cell system operating on natural gas or propane

Overview of Technical Approach

- Develop environmentally-friendly processes for recovering and recycling the precious metals present in PEM fuel cell stacks and fuel reformers.
 - Investigate
 - leaching
 - industrial microwave methods
 - super critical carbon dioxide

and select the preferred processes for recovering precious metals from the various types of catalysts present in PEM fuel cell systems

- Build and operate pilot equipment to demonstrate process viability (Primary deliverable)
- Estimate the economics of viable processes

Safety Issues Related to the Pt Recycling Project

- Microwave Techniques
 - Microwave leakage
 - Electrical Shock for capacitor
 - HF formation
 - Overheating
- Supercritical Fluid Techniques
 - System under pressure
- Leach Techniques
 - Corrosive fumes

- Use a microwave leak detector and safety interlocks
- use proper insulation
- Properly vent and/or scrub exhaust fumes
- Monitor temperature
- Use Plexi-glass shields for protection

Properly vent and/or scrub fumes

Milestone Schedule for Platinum Group Metal Recycling Technology Development – Microwave Approach

ENGELHARD

Milestone Schedule for Platinum Group Metal Recycling Technology Development- SC CO2 Approach

Milestone Schedule for Platinum Group Metal Recycling Technology Development- Engelhard Activities Up to 2006

Milestone Schedule for Platinum Group Metal Recycling Technology Development- Engelhard Activities For 2006-2008

Task	Due Date
Place Order for large batch of MEA's	1/1/2006
Accept delivery of MEA's	6/1/2006
Estimate preliminary process cost	10/1/2006
Engineering plans for pilot plant due	12/15/2006
Final estimate of process cost	3/1/2007
Order Equipment for demonstration plant	4/1/2007
Build demonstration plant	12/1/2007
Demonstration plant operational	6/1/2008

MEA Aging of Gore-fabricated MEA's

- Greenlight Power will assemble a stack and
 - Age with reformate using a stationary source cycle
 - Acquire electrochemical performance
 - Withdraw cells at 500, 1000 and 1500 hours for testing
 - Harvest the remainder at 2000 hours
- The suitability of proposed recovery methodology to aged MEA's will be determined
- Ruthenium migration across membrane will be evaluated through time lapse sampling of the stack

Major accomplishments In 1st year

- VT Thermal Destruction of MEA with microwave energy
- Ceralink Delamination of 3- and 5-layer MEA's
- University of Kansas Construction of apparatus for phase studies
- Gore Fabrication of MEA batch (end of 2nd quarter)
- Engelhard Developing practical method for Pt and Ru determination with quantitative recovery

Materials Science and Engineering

Figure 1. Results of microwave firing of three samples of 3-ply catalyst-coated Nafion stacked 4 sheets high on a microwave-transparent substrate.

Future Work (2004-2005)

- VT
 - Continue temperature versus time runs with MEA samples.
 - Transfer residues to Engelhard to assay Pt content and ash composition
 - Build a microwave unit with effluent treatment capability
- University of Kansas
 - Continue phase analysis studies to determine favorable solvent system for Nafion.
- Ceralink
 - Evaluate acidic media and microwave conditions for optimizing precious metal recovery from MEA's

Acknowledgement to Our Technology Partners

- Corporate Project Administration and technical services
- Seneca Refining expertise and facilities
- Virginia Tech, Blacksburg, VA (Diane Folz, David Clark and Carlos Suchicital)
 Development of emission-free process involving microwave decomposition and sequestration of hazardous volatiles
- Ceralink, Alfred, NY (Holly Shulman) Microwave assisted leaching of PM from Nafion
- University of Kansas, Lawrence KA (Bala Subramaniam) Supercritical fluid treatment of MEA's to dissolve Nafion and permit separation of PM phase from Nafion
- W.L. Gore, Elkton, MD Supplier of MEA's
- Green Light Power, Vancouver, BC- Testing of stacks to generate aged MEA's

